GVKun编程网logo

pandas DataFrame的CSV输出端(pandas输出csv文件)

26

本文将带您了解关于pandasDataFrame的CSV输出端的新内容,同时我们还将为您解释pandas输出csv文件的相关知识,另外,我们还将为您提供关于Pandas-使用一个Dataframe列的

本文将带您了解关于pandas DataFrame的CSV输出端的新内容,同时我们还将为您解释pandas输出csv文件的相关知识,另外,我们还将为您提供关于Pandas - 使用一个 Dataframe 列的子字符串比较两个 Dataframe、pandas dataframe 与 spark dataframe 互相转换(数据类型应该怎么转换呢?)、Pandas DataFrame使用另一个DataFrame列过滤行、Pandas Dataframe按列值分为单独的csv的实用信息。

本文目录一览:

pandas DataFrame的CSV输出端(pandas输出csv文件)

pandas DataFrame的CSV输出端(pandas输出csv文件)

我想知道如何将新DataFrame数据添加到现有csv文件的末尾?在to_csv没有提到这样的功能。

答案1

小编典典

您可以to_csv通过传递以附加模式打开的文件来附加使用:

with open(file_name, ''a'') as f:    df.to_csv(f, header=False)

使用header=None,以免附加列名。

实际上,pandas有一个包装器可以to_csv通过使用mode参数来做到这一点:

df.to_csv(f, mode=''a'', header=False)

Pandas - 使用一个 Dataframe 列的子字符串比较两个 Dataframe

Pandas - 使用一个 Dataframe 列的子字符串比较两个 Dataframe

我能够使用下面的方法获得所需的输出

df1.merge(df2,left_on = df2.prod_ref.str.extract(''(\d+)'',expand = False),right_on = df1.prod_id.str.extract(''(\d+)'',how = ''left'')

pandas dataframe 与 spark dataframe 互相转换(数据类型应该怎么转换呢?)

pandas dataframe 与 spark dataframe 互相转换(数据类型应该怎么转换呢?)

文章大纲

  • spark 2.x 版本
  • spark 3.2 版本及以上
  • 参考文献


spark 2.x 版本

spark 2.4.8 版本:

  • https://spark.apache.org/docs/2.4.8/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.toPandas

源代码:

@since(1.3)
    def toPandas(self):
        """
        Returns the contents of this :class:`DataFrame

本文同步分享在 博客“shiter”(CSDN)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

Pandas DataFrame使用另一个DataFrame列过滤行

Pandas DataFrame使用另一个DataFrame列过滤行

我会做merge

out = df1.merge(df2[['col1','col2']],on = 'col1',suffixes = ('','1')).query('col3>=col21').drop('col21',1)

out
Out[15]: 
  col1  col2  col3  col4
1    A     2  0.80   200
2    A     2  0.90   300
3    A     3  0.95   400
4    A     3  0.85   500
5    B     2  0.65   600
6    B     2  0.75   700
9    B     3  0.75  1000

reindex

out = df1[df1['col3'] >= df2.set_index('col1')['col2'].reindex(df1['col1']).values]
Out[19]: 
  col1  col2  col3  col4
1    A     2  0.80   200
2    A     2  0.90   300
3    A     3  0.95   400
4    A     3  0.85   500
5    B     2  0.65   600
6    B     2  0.75   700
9    B     3  0.75  1000

您还可以使用map

 df1.loc[df1.col3 >= df1.col1.map(df2.set_index("col1").col2)]
,

我的方法类似于@Ben_Yo的合并答案,但是代码更多,但也许更直接。

您只需:

  1. 合并该列并创建新的数据框 ZStack{ Rectangle() .frame(width: geometry.size.width,height: geometry.size.height/3.25) .shadow(radius: 5) .foregroundColor(Color.white) //Words ontop of the Rectangle VStack { HStack { Spacer() Text("Hello World") }.padding(.trailing,40) Spacer() //<-- PROBLEM HERE }//.offset(y: -40) }
  2. 根据条件(在本例中为s
  3. ),将数据名人s更改为返回TrueFalse的布尔系列。
  4. 最后,将s['col3'] >= s['col2']传递给s,结果将排除布尔系列df1中返回False的行:

s

Pandas Dataframe按列值分为单独的csv

Pandas Dataframe按列值分为单独的csv

groupby,然后发送到csv以动态执行此操作:

for i,x in df.groupby('s'): x.to_csv(f'df{i}.csv',index=False)

今天关于pandas DataFrame的CSV输出端pandas输出csv文件的分享就到这里,希望大家有所收获,若想了解更多关于Pandas - 使用一个 Dataframe 列的子字符串比较两个 Dataframe、pandas dataframe 与 spark dataframe 互相转换(数据类型应该怎么转换呢?)、Pandas DataFrame使用另一个DataFrame列过滤行、Pandas Dataframe按列值分为单独的csv等相关知识,可以在本站进行查询。

本文标签: