此处将为大家介绍关于Pythonnumpy模块-poly()实例源码的详细内容,并且为您解答有关python中numpy模块的相关问题,此外,我们还将为您介绍关于Jupyter中的Numpy在打印时出
此处将为大家介绍关于Python numpy 模块-poly() 实例源码的详细内容,并且为您解答有关python中numpy模块的相关问题,此外,我们还将为您介绍关于Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性的有用信息。
本文目录一览:- Python numpy 模块-poly() 实例源码(python中numpy模块)
- Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
- numpy.random.random & numpy.ndarray.astype & numpy.arange
- numpy.ravel()/numpy.flatten()/numpy.squeeze()
- Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性
Python numpy 模块-poly() 实例源码(python中numpy模块)
Python numpy 模块,poly() 实例源码
我们从Python开源项目中,提取了以下35个代码示例,用于说明如何使用numpy.poly()。
- def estimate_time_constant(y, p=2, sn=None, lags=5, fudge_factor=1.):
- """
- Estimate AR model parameters through the autocovariance function
- Parameters
- ----------
- y : array,shape (T,)
- One dimensional array containing the fluorescence intensities with
- one entry per time-bin.
- p : positive integer
- order of AR system
- sn : float
- sn standard deviation,estimated if not provided.
- lags : positive integer
- number of additional lags where he autocovariance is computed
- fudge_factor : float (0< fudge_factor <= 1)
- shrinkage factor to reduce bias
- Returns
- -------
- g : estimated coefficients of the AR process
- """
- if sn is None:
- sn = GetSn(y)
- lags += p
- xc = axcov(y, lags)
- xc = xc[:, np.newaxis]
- A = scipy.linalg.toeplitz(xc[lags + np.arange(lags)],
- xc[lags + np.arange(p)]) - sn**2 * np.eye(lags, p)
- g = np.linalg.lstsq(A, xc[lags + 1:])[0]
- gr = np.roots(np.concatenate([np.array([1]), -g.flatten()]))
- gr = (gr + gr.conjugate()) / 2.
- gr[gr > 1] = 0.95 + np.random.normal(0, 0.01, np.sum(gr > 1))
- gr[gr < 0] = 0.15 + np.random.normal(0, np.sum(gr < 0))
- g = np.poly(fudge_factor * gr)
- g = -g[1:]
- return g.flatten()
- def test_poly(self):
- assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
- [1, -3, -2, 6])
- # From matlab docs
- A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
- assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])
- # Should produce real output for perfect conjugates
- assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
- assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
- 1-2j, 1.+3.5j, 1-3.5j])))
- assert_(np.isrealobj(np.poly([1j, -1j, 1-2j, 1+3j, 1-3.j])))
- assert_(np.isrealobj(np.poly([1j, 1-2j])))
- assert_(np.isrealobj(np.poly([1j, 2j, -2j])))
- assert_(np.isrealobj(np.poly([1j, -1j])))
- assert_(np.isrealobj(np.poly([1, -1])))
- assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
- np.random.seed(42)
- a = np.random.randn(100) + 1j*np.random.randn(100)
- assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(''3.0''), Decimal(''2.0'')])
- p2 = p * Decimal(''1.333333333333333'')
- assert_(p2[1] == Decimal("3.9999999999999990"))
- p2 = p.deriv()
- assert_(p2[1] == Decimal(''8.0''))
- p2 = p.integ()
- assert_(p2[3] == Decimal("1.333333333333333333333333333"))
- assert_(p2[2] == Decimal(''1.5''))
- assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
- p = np.poly([Decimal(1), Decimal(2)])
- assert_equal(np.poly([Decimal(1), Decimal(2)]),
- [1, Decimal(-3), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, 21)
- assert_almost_equal(np.poly(v), np.poly(np.diag(v)))
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), order + 1))
- for i in range(len(all_lsf)):
- lsf = all_lsf[i]
- zeros = np.exp(1j * lsf)
- sum_zeros = zeros[::2]
- diff_zeros = zeros[1::2]
- sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
- diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
- sum_filt = np.poly(sum_zeros)
- diff_filt = np.poly(diff_zeros)
- if order % 2 != 0:
- deconv_diff = sg.convolve(diff_filt, 0, -1])
- deconv_sum = sum_filt
- else:
- deconv_diff = sg.convolve(diff_filt, -1])
- deconv_sum = sg.convolve(sum_filt, 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, np.poly(np.diag(v)))
- def estimate_time_constant(fluor, p = 2, sn = None, lags = 5, fudge_factor = 1.):
- """
- Estimate AR model parameters through the autocovariance function
- Inputs
- ----------
- fluor : nparray
- One dimensional array containing the fluorescence intensities with
- one entry per time-bin.
- p : positive integer
- order of AR system
- sn : float
- noise standard deviation,estimated if not provided.
- lags : positive integer
- number of additional lags where he autocovariance is computed
- fudge_factor : float (0< fudge_factor <= 1)
- shrinkage factor to reduce bias
- Return
- -----------
- g : estimated coefficients of the AR process
- """
- if sn is None:
- sn = GetSn(fluor)
- lags += p
- xc = axcov(fluor,lags)
- xc = xc[:,np.newaxis]
- A = scipy.linalg.toeplitz(xc[lags+np.arange(lags)],xc[lags+np.arange(p)]) - sn**2*np.eye(lags,p)
- g = np.linalg.lstsq(A,xc[lags+1:])[0]
- gr = np.roots(np.concatenate([np.array([1]),-g.flatten()]))
- gr = (gr+gr.conjugate())/2.
- gr[gr>1] = 0.95 + np.random.normal(0,0.01,np.sum(gr>1))
- gr[gr<0] = 0.15 + np.random.normal(0,np.sum(gr<0))
- g = np.poly(fudge_factor*gr)
- g = -g[1:]
- return g.flatten()
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, np.poly(np.diag(v)))
- def z_coeff(Poles,Zeros,fs,g,fg,fo = ''none''):
- if fg == np.inf:
- fg = fs/2
- if fo == ''none'':
- beta = 1.0
- else:
- beta = f_warp(fo,fs)/fo
- a = np.poly(z_from_f(beta*np.array(Poles),fs))
- b = np.poly(z_from_f(beta*np.array(Zeros),fs))
- gain = 10.**(g/20.)/abs(Fz_at_f(beta*np.array(Poles),beta*np.array(Zeros),fs))
- return (a,b*gain)
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, np.poly(np.diag(v)))
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, np.poly(np.diag(v)))
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def lsf_to_lpc(all_lsf):
- if len(all_lsf.shape) < 2:
- all_lsf = all_lsf[None]
- order = all_lsf.shape[1]
- all_lpc = np.zeros((len(all_lsf), 1])
- lpc = .5 * (deconv_sum + deconv_diff)
- # Last coefficient is 0 and not returned
- all_lpc[i] = lpc[:-1]
- return np.squeeze(all_lpc)
- def test_objects(self):
- from decimal import Decimal
- p = np.poly1d([Decimal(''4.0''), Decimal(2)])
- def test_zero_dims(self):
- try:
- np.poly(np.zeros((0, 0)))
- except ValueError:
- pass
- def test_poly_int_overflow(self):
- """
- Regression test for gh-5096.
- """
- v = np.arange(1, np.poly(np.diag(v)))
Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable
如何解决Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: ''numpy.ndarray'' object is not callable?
晚安, 尝试打印以下内容时,我在 jupyter 中遇到了 numpy 问题,并且得到了一个 错误: 需要注意的是python版本是3.8.8。 我先用 spyder 测试它,它运行正确,它给了我预期的结果
使用 Spyder:
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
Results
0.6604903457995978
0.8236300859753154
0.16067650689842816
0.6967868357083673
0.4231597934445466
现在有了 jupyter
import numpy as np
for i in range (5):
n = np.random.rand ()
print (n)
-------------------------------------------------- ------
TypeError Traceback (most recent call last)
<ipython-input-78-0c6a801b3ea9> in <module>
2 for i in range (5):
3 n = np.random.rand ()
----> 4 print (n)
TypeError: ''numpy.ndarray'' object is not callable
感谢您对我如何在 Jupyter 中解决此问题的帮助。
非常感谢您抽出宝贵时间。
阿特,约翰”
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
numpy.random.random & numpy.ndarray.astype & numpy.arange
今天看到这样一句代码:
xb = np.random.random((nb, d)).astype(''float32'') #创建一个二维随机数矩阵(nb行d列)
xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值
要理解这两句代码需要理解三个函数
1、生成随机数
numpy.random.random(size=None)
size为None时,返回float。
size不为None时,返回numpy.ndarray。例如numpy.random.random((1,2)),返回1行2列的numpy数组
2、对numpy数组中每一个元素进行类型转换
numpy.ndarray.astype(dtype)
返回numpy.ndarray。例如 numpy.array([1, 2, 2.5]).astype(int),返回numpy数组 [1, 2, 2]
3、获取等差数列
numpy.arange([start,]stop,[step,]dtype=None)
功能类似python中自带的range()和numpy中的numpy.linspace
返回numpy数组。例如numpy.arange(3),返回numpy数组[0, 1, 2]
numpy.ravel()/numpy.flatten()/numpy.squeeze()
numpy.ravel(a, order=''C'')
Return a flattened array
numpy.chararray.flatten(order=''C'')
Return a copy of the array collapsed into one dimension
numpy.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.
相同点: 将多维数组 降为 一维数组
不同点:
ravel() 返回的是视图(view),意味着改变元素的值会影响原始数组元素的值;
flatten() 返回的是拷贝,意味着改变元素的值不会影响原始数组;
squeeze()返回的是视图(view),仅仅是将shape中dimension为1的维度去掉;
ravel()示例:
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.ravel()
16 print("a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19
20 print(a)
21 log_type(''a'',a)
flatten()示例
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.flatten()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
squeeze()示例:
1. 没有single-dimensional entries的情况
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
从结果中可以看到,当没有single-dimensional entries时,squeeze()返回额数组对象是一个view,而不是copy。
2. 有single-dimentional entries 的情况
1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 def log_type(name,arr):
5 print("数组{}的大小:{}".format(name,arr.size))
6 print("数组{}的维度:{}".format(name,arr.shape))
7 print("数组{}的维度:{}".format(name,arr.ndim))
8 print("数组{}元素的数据类型:{}".format(name,arr.dtype))
9 #print("数组:{}".format(arr.data))
10
11 a = np.floor(10*np.random.random((1,3,4)))
12 print(a)
13 log_type(''a'',a)
14
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20
21 print("a:{}".format(a))
22 log_type(''a'',a)
Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性
一、Numpy数组创建
part 1:np.linspace(起始值,终止值,元素总个数
import numpy as np
''''''
numpy中的ndarray数组
''''''
ary = np.array([1, 2, 3, 4, 5])
print(ary)
ary = ary * 10
print(ary)
''''''
ndarray对象的创建
''''''
# 创建二维数组
# np.array([[],[],...])
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(a)
# np.arange(起始值, 结束值, 步长(默认1))
b = np.arange(1, 10, 1)
print(b)
print("-------------np.zeros(数组元素个数, dtype=''数组元素类型'')-----")
# 创建一维数组:
c = np.zeros(10)
print(c, ''; c.dtype:'', c.dtype)
# 创建二维数组:
print(np.zeros ((3,4)))
print("----------np.ones(数组元素个数, dtype=''数组元素类型'')--------")
# 创建一维数组:
d = np.ones(10, dtype=''int64'')
print(d, ''; d.dtype:'', d.dtype)
# 创建三维数组:
print(np.ones( (2,3,4), dtype=np.int32 ))
# 打印维度
print(np.ones( (2,3,4), dtype=np.int32 ).ndim) # 返回:3(维)
结果图:
part 2 :np.linspace ( 起始值,终止值,元素总个数)
import numpy as np
a = np.arange( 10, 30, 5 )
b = np.arange( 0, 2, 0.3 )
c = np.arange(12).reshape(4,3)
d = np.random.random((2,3)) # 取-1到1之间的随机数,要求设置为诶2行3列的结构
print(a)
print(b)
print(c)
print(d)
print("-----------------")
from numpy import pi
print(np.linspace( 0, 2*pi, 100 ))
print("-------------np.linspace(起始值,终止值,元素总个数)------------------")
print(np.sin(np.linspace( 0, 2*pi, 100 )))
结果图:
二、Numpy的ndarray对象属性:
数组的结构:array.shape
数组的维度:array.ndim
元素的类型:array.dtype
数组元素的个数:array.size
数组的索引(下标):array[0]
''''''
数组的基本属性
''''''
import numpy as np
print("--------------------案例1:------------------------------")
a = np.arange(15).reshape(3, 5)
print(a)
print(a.shape) # 打印数组结构
print(len(a)) # 打印有多少行
print(a.ndim) # 打印维度
print(a.dtype) # 打印a数组内的元素的数据类型
# print(a.dtype.name)
print(a.size) # 打印数组的总元素个数
print("-------------------案例2:---------------------------")
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a)
# 测试数组的基本属性
print(''a.shape:'', a.shape)
print(''a.size:'', a.size)
print(''len(a):'', len(a))
# a.shape = (6, ) # 此格式可将原数组结构变成1行6列的数据结构
# print(a, ''a.shape:'', a.shape)
# 数组元素的索引
ary = np.arange(1, 28)
ary.shape = (3, 3, 3) # 创建三维数组
print("ary.shape:",ary.shape,"\n",ary )
print("-----------------")
print(''ary[0]:'', ary[0])
print(''ary[0][0]:'', ary[0][0])
print(''ary[0][0][0]:'', ary[0][0][0])
print(''ary[0,0,0]:'', ary[0, 0, 0])
print("-----------------")
# 遍历三维数组:遍历出数组里的每个元素
for i in range(ary.shape[0]):
for j in range(ary.shape[1]):
for k in range(ary.shape[2]):
print(ary[i, j, k], end='' '')
结果图:
今天关于Python numpy 模块-poly() 实例源码和python中numpy模块的介绍到此结束,谢谢您的阅读,有关Jupyter 中的 Numpy 在打印时出错(Python 版本 3.8.8):TypeError: 'numpy.ndarray' object is not callable、numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性等更多相关知识的信息可以在本站进行查询。
本文标签: