GVKun编程网logo

Python数据分析:numpy(python数据分析numpy和pandas)

4

对于想了解Python数据分析:numpy的读者,本文将提供新的信息,我们将详细介绍python数据分析numpy和pandas,并且为您提供关于numpy.random.random&numpy.n

对于想了解Python数据分析:numpy的读者,本文将提供新的信息,我们将详细介绍python数据分析numpy和pandas,并且为您提供关于numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性、Python数据分析 - numpy的有价值信息。

本文目录一览:

Python数据分析:numpy(python数据分析numpy和pandas)

Python数据分析:numpy(python数据分析numpy和pandas)

numpy创建数组(矩阵)

创建数组

import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.array(range(1, 6))
c = np.arange(1, 6)  # np.arange用法:arange(start,stop,step,dtype=None)

数组的类名和数据的类型

In [1]: type(a)
Out[1]: numpy.ndarray
In [2]: a.dtype
Out[2]: dtype(''int64'') # 常见类型有int,uint(8,16,32,64),float(16,32,64,128),complex(64,128,256),bool

数据类型的操作

a = np.array([1,0,1,0], dtype=np.bool) # 创建数组时指定数据类型
a.astype(np.int8)  # 修改数组的数据类型
b = np.array([0.0485,0.2689,1.8567,0.8754])
np.round(b, 2)  # 修改浮点型小数位数

数组的形状

a.shape  # 查看数组形状
a.reshape(2,2) # 修改数组形状
a.flatten()  # 把多维数组转化为一维数组

数组的计算

数组和数的计算

a = np.array([1, 2, 3, 4, 5])
b = a + 1  # 按位相加
c = a * 3  # 按位相乘

数组与数组的计算

a = np.array([[1, 2, 3, 4],
              [5, 6, 7, 8]])
b = np.array([[1, 1, 1, 1],
              [1, 1, 1, 1]])
c = np.array([1, 1, 1, 1])
d = np.array([[1],
              [1]])
O1 = a + b  # 形状相同按位相加
O2 = a + c
O3 = a + d  # 形状不同,只有满足广播原则才可计算,O1=O2=O3

数组的转置

a.transpose()
a.swapaxes(1,0)
a.T

以上的三种方法都可以实现二维数组的转置的效果,转置和交换轴的效果一样。

numpy索引和切片

a[1,:]  # 取一行,可简写为a[1] 
a[:,2]  # 取一列
a[1:3,:]  # 取连续多行,可简写为a[1:3] 
a[:,2:4]  # 取连续多列
a[[1,3],:]  # 取离散多行,可简写为a[[1,3]]
a[:,[2,4]]  # 取离散多行
a[a<2]  # bool索引
np.where(a<2,0,4)  # 三元运算符,满足条件1替换为0,不满足替换为4
a.clip(2,3)  # 裁剪,大于3替换为3,小于2替换为2

numpy中的nan和inf

nan(NAN,Nan):not a number,表示不是一个数字,type类型为float。(两个nan是不相等的)
inf:infinity,inf表示正无穷,-inf表示负无穷,type类型为float
np.count_nonzero(a!=a)  # 判断a中nan个数
np.isnan(a)  # 判断是否为nan,返回bool类型
a[np.isnan(a)] = 0 # nan 替换为0

numpy中常用统计函数

求和:t.sum(axis=None)

均值:t.mean(axis=None)

中值:np.median(t,axis=None)

最大值:t.max(axis=None)

最小值:t.min(axis=None)

极值:np.ptp(t,axis=None) 即最大值和最小值之差

标准差:t.std(axis=None)

默认返回多维数组的全部的统计结果,如果指定axis则返回一个当前轴上的结果

数组的拼接

np.vstack(a,b) # 竖直拼接
np.hstack(a,b) # 水平拼接

数组的行列交换

a[[1,2],:] = a[[2,1],:] # 行交换
a[:,[0,2]] = a[:,[2,0]] # 列交换

其他实用方法

1.获取最大值最小值的位置

np.argmax(t,axis=0)

np.argmin(t,axis=1)

2.创建一个全0的数组: np.zeros((3,4))

3.创建一个全1的数组:np.ones((3,4))

4.创建一个对角线为1的正方形数组(方阵):np.eye(3)

5.numpy生成随机数

注意:numpy的copy和view

  1. a=b 完全不复制,a和b相互影响
  2. a = b[:],视图的操作,一种切片,会创建新的对象a,但是a的数据完全由b保管,他们两个的数据变化是一致的,
  3. a = b.copy(),复制,a和b互不影响

    本次分享就到这啦,如果对您有帮助的话,麻烦点个关注再走哦~

numpy.random.random & numpy.ndarray.astype & numpy.arange

numpy.random.random & numpy.ndarray.astype & numpy.arange

今天看到这样一句代码:

xb = np.random.random((nb, d)).astype(''float32'') #创建一个二维随机数矩阵(nb行d列)
xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值

要理解这两句代码需要理解三个函数

1、生成随机数

numpy.random.random(size=None) 

size为None时,返回float。

size不为None时,返回numpy.ndarray。例如numpy.random.random((1,2)),返回1行2列的numpy数组

 

2、对numpy数组中每一个元素进行类型转换

numpy.ndarray.astype(dtype)

返回numpy.ndarray。例如 numpy.array([1, 2, 2.5]).astype(int),返回numpy数组 [1, 2, 2]

 

3、获取等差数列

numpy.arange([start,]stop,[step,]dtype=None)

功能类似python中自带的range()和numpy中的numpy.linspace

返回numpy数组。例如numpy.arange(3),返回numpy数组[0, 1, 2]

numpy.ravel()/numpy.flatten()/numpy.squeeze()

numpy.ravel()/numpy.flatten()/numpy.squeeze()

numpy.ravel(a, order=''C'')

  Return a flattened array

numpy.chararray.flatten(order=''C'')

  Return a copy of the array collapsed into one dimension

numpy.squeeze(a, axis=None)

  Remove single-dimensional entries from the shape of an array.

 

相同点: 将多维数组 降为 一维数组

不同点:

  ravel() 返回的是视图(view),意味着改变元素的值会影响原始数组元素的值;

  flatten() 返回的是拷贝,意味着改变元素的值不会影响原始数组;

  squeeze()返回的是视图(view),仅仅是将shape中dimension为1的维度去掉;

 

ravel()示例:

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 def log_type(name,arr):
 5     print("数组{}的大小:{}".format(name,arr.size))
 6     print("数组{}的维度:{}".format(name,arr.shape))
 7     print("数组{}的维度:{}".format(name,arr.ndim))
 8     print("数组{}元素的数据类型:{}".format(name,arr.dtype))
 9     #print("数组:{}".format(arr.data))
10     
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14 
15 a1 = a.ravel()
16 print("a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 
20 print(a)
21 log_type(''a'',a)

 

flatten()示例

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 def log_type(name,arr):
 5     print("数组{}的大小:{}".format(name,arr.size))
 6     print("数组{}的维度:{}".format(name,arr.shape))
 7     print("数组{}的维度:{}".format(name,arr.ndim))
 8     print("数组{}元素的数据类型:{}".format(name,arr.dtype))
 9     #print("数组:{}".format(arr.data))
10     
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14 
15 a1 = a.flatten()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20 
21 print("a:{}".format(a))
22 log_type(''a'',a)

 

squeeze()示例:

1. 没有single-dimensional entries的情况

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 def log_type(name,arr):
 5     print("数组{}的大小:{}".format(name,arr.size))
 6     print("数组{}的维度:{}".format(name,arr.shape))
 7     print("数组{}的维度:{}".format(name,arr.ndim))
 8     print("数组{}元素的数据类型:{}".format(name,arr.dtype))
 9     #print("数组:{}".format(arr.data))
10     
11 a = np.floor(10*np.random.random((3,4)))
12 print(a)
13 log_type(''a'',a)
14 
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20 
21 print("a:{}".format(a))
22 log_type(''a'',a)

从结果中可以看到,当没有single-dimensional entries时,squeeze()返回额数组对象是一个view,而不是copy。

 

2. 有single-dimentional entries 的情况

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 def log_type(name,arr):
 5     print("数组{}的大小:{}".format(name,arr.size))
 6     print("数组{}的维度:{}".format(name,arr.shape))
 7     print("数组{}的维度:{}".format(name,arr.ndim))
 8     print("数组{}元素的数据类型:{}".format(name,arr.dtype))
 9     #print("数组:{}".format(arr.data))
10 
11 a = np.floor(10*np.random.random((1,3,4)))
12 print(a)
13 log_type(''a'',a)
14 
15 a1 = a.squeeze()
16 print("修改前a1:{}".format(a1))
17 log_type(''a1'',a1)
18 a1[2] = 100
19 print("修改后a1:{}".format(a1))
20 
21 print("a:{}".format(a))
22 log_type(''a'',a)

 

Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性

Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性

一、Numpy数组创建

 part 1:np.linspace(起始值,终止值,元素总个数

 

import numpy as np
''''''
numpy中的ndarray数组
''''''

ary = np.array([1, 2, 3, 4, 5])
print(ary)
ary = ary * 10
print(ary)

''''''
ndarray对象的创建
''''''
# 创建二维数组
# np.array([[],[],...])
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(a)

# np.arange(起始值, 结束值, 步长(默认1))
b = np.arange(1, 10, 1)
print(b)

print("-------------np.zeros(数组元素个数, dtype=''数组元素类型'')-----")
# 创建一维数组:
c = np.zeros(10)
print(c, ''; c.dtype:'', c.dtype)

# 创建二维数组:
print(np.zeros ((3,4)))

print("----------np.ones(数组元素个数, dtype=''数组元素类型'')--------")
# 创建一维数组:
d = np.ones(10, dtype=''int64'')
print(d, ''; d.dtype:'', d.dtype)

# 创建三维数组:
print(np.ones( (2,3,4), dtype=np.int32 ))
# 打印维度
print(np.ones( (2,3,4), dtype=np.int32 ).ndim)  # 返回:3(维)

 

结果图:

 

part 2 :np.linspace ( 起始值,终止值,元素总个数)

 

import numpy as np
a = np.arange( 10, 30, 5 )

b = np.arange( 0, 2, 0.3 )

c = np.arange(12).reshape(4,3)

d = np.random.random((2,3))  # 取-1到1之间的随机数,要求设置为诶2行3列的结构

print(a)
print(b)
print(c)
print(d)

print("-----------------")
from numpy import pi
print(np.linspace( 0, 2*pi, 100 ))

print("-------------np.linspace(起始值,终止值,元素总个数)------------------")
print(np.sin(np.linspace( 0, 2*pi, 100 )))

 

结果图:

 

 

 

 

二、Numpy的ndarray对象属性:

数组的结构:array.shape

数组的维度:array.ndim

元素的类型:array.dtype

数组元素的个数:array.size

数组的索引(下标):array[0]

 

''''''
数组的基本属性
''''''
import numpy as np

print("--------------------案例1:------------------------------")
a = np.arange(15).reshape(3, 5)
print(a)
print(a.shape)     # 打印数组结构
print(len(a))      # 打印有多少行
print(a.ndim)     # 打印维度
print(a.dtype)    # 打印a数组内的元素的数据类型
# print(a.dtype.name)
print(a.size)    # 打印数组的总元素个数


print("-------------------案例2:---------------------------")
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a)

# 测试数组的基本属性
print(''a.shape:'', a.shape)
print(''a.size:'', a.size)
print(''len(a):'', len(a))
# a.shape = (6, )  # 此格式可将原数组结构变成1行6列的数据结构
# print(a, ''a.shape:'', a.shape)

# 数组元素的索引
ary = np.arange(1, 28)
ary.shape = (3, 3, 3)   # 创建三维数组
print("ary.shape:",ary.shape,"\n",ary )

print("-----------------")
print(''ary[0]:'', ary[0])
print(''ary[0][0]:'', ary[0][0])
print(''ary[0][0][0]:'', ary[0][0][0])
print(''ary[0,0,0]:'', ary[0, 0, 0])

print("-----------------")


# 遍历三维数组:遍历出数组里的每个元素
for i in range(ary.shape[0]):
    for j in range(ary.shape[1]):
        for k in range(ary.shape[2]):
            print(ary[i, j, k], end='' '')
            

 

结果图:

 

Python数据分析 - numpy

Python数据分析 - numpy

前言

NUMPY(以下简称NP)是Python数据分析必不可少的第三方库,np的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型。如今,np被Python其它科学计算包作为基础包,已成为Python 数据分析的基础,可以说,NP是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。因此,理解np的数据类型对python数据分析十分有帮助。
下面,本文将介绍Np的常用操作和基本数据类型。

NP提供了以下重点功能。

  • 一个强大的N维数组对象ndarray
  • 广功能函数
  • 整合C/C++/Fortran代码的工具
  • 提供了线性代数、傅里叶变换、随机数生成的相关功能

为了更加直观的了解Np的强大与作用,我们先看作用再看方法:

使用NUMPY操作数据集

在操作数据之前,我们先来理解什么是维度:

什么是维度

维度是一组数据的组织形式,不同数据维度可能表示不同的含义。
一维数据由对等关系的有序或无序数据构成,采用线性方式组织,可以用数组表示。
通俗来讲,

1,2,3,4

这么一行数据就可以称之为一维数据,但如果我们再对其折叠:

1,2,
3,4

那么他就成为了二维数据,又可以称之为矩阵。

什么是数据集

数据集,顾名思义就是数据的集合,是用以训练程序的数据集合,一般是二维或者多维数表。
如果我们想自己手工新建一个数据集,可以直接新建一个文本文件,只要有恰当的数据,都可以称之为数据集:

城市,环比,同比,定基
北京,100.1,100.2,100.3
上海,111.1,111.2,111.3
南京,133.0,133.3,133.4

比如这样,我们就可以称上面的文件称之为数据集。
我们还注意到,上面数据是使用逗号作为分隔符分隔数据的,它简单描述了数据的内容和含义,并使用半角逗号作为分隔符。
像这样,用逗号分隔的数据集就称之为CSV(Comma-Separated Value,逗号分隔值)数据集,它是一种常见的文件格式,用来存储批量的数据。它就像一张excel表,用来存储简单结构的数据。
怎么样,数据集的概念是否特别简单呢?

生成数据集

数据集是一个简单的概念,但每次使用手工的方式去写毕竟不方便,所以,我们可以使用np的内置函数来生成数据集:

np.savetxt(frame,array,fmt=''%.18e",delimiter=None)
  • frame:文件、字符串、或产生器的名字,可以是.gz,.bz2的压缩文件
  • arrray:存入文件的NP的数组
  • fmt(format):写入文件的格式,如%d,%.2f,%.18e(默认,科学计数法保留18位)
  • delemiter:分割字符串,默认是任何空格。

我们可以这样写下代码:

a= np.arange(20).reshape(4,5)
np.savetxt(''demo.csv'',a,fmt=''%d'',delimiter='','')

这样,我们就会在当前的工作目录下发现一个新的demo.csv,用记事本打开,里面是一个4 * 5的矩阵,元素0~19。

读取数据集

既然生成,那就可以读取,同样使用np:

np.loadtxt(frame,dtype=np.float,delimiter=None,inpack=False)
  • frame:指定读入的文件来源
  • dtype:数据类型,默认为np.float。
  • delimiter:分割字符串
  • unpack:默认为False读入文件写入一个数组,如果为True,读入属性将分别写入不同变量

同样的我们只需要写下代码:

np.loadtxt("demo.csv",delimiter=",")

就可以查看到我们先前写入的数组a。

CSV文件的局限

可以发现,CSV文件只能有效存储和读取一维和二维数组,因为更高的维度无法更直观的文本下显现出来,这时,更加灵活的存取方式就呼之欲出了,但讲之前先卖个关子,再介绍一个不太常用的方法:tofile:
对于NP中的ndarray数组,我们可以使用NP中的tofile方法。

a.tofile(frame,sep='''',format=''%d'')
  • frame:文件,字符串
  • 数据分割字符串,如果不写,将使用二进制文件存储
  • format:写入数据的格式

同样,我们只需要命令:

import numpy as np
a = np.arange(100).reshape(5,10,2)
a.tofile("a.dat",sep='','',format=''%d'')

就可以生成新的CSV数据集。

此时,我们如果打开a.dat文件,我们可以看到数组1,2,3……99。但是与CSV不同,这个文件并没有包含数字的维度信息,他只是将数组所有元素逐一的列出。而且如果我们不指定sep,将保存为二进制文件,虽然对人不可读,但将占用更小的空间。

既然tofile可以保存文本文件,那么也很容易猜到对应的fromfile可以还原这些信息。

np.fromfile(frame,dtype=float,count=-1,sep='''')
  • frame:文件
  • dtype:读取元素使用的数据类型,默认为float
  • count:读文件的个数,默认-1,读取全部
  • sep:数据分割字符串,如果是空串,写入文件为二进制。

如果我们想要重新恢复数据的维度信息,我们需要重新使用reshape来恢复维度信息:

c = np.fromfile("b.dat",sep='','',dtype=np.int).reshape(5,10,2)

不得不说,当我看到这个方法时感觉这两个真是蠢爆了,使用savetxt / loadtxt 至少还能保存个二维信息,而使用了tofile / fromfile 方法居然把数被伸展为一维的,然后自己记住维度信息(╯‵□′)╯︵┻━┻。

因此,为了保存更复杂的数据类型,二维以上的数据信息,save / load 函数成功解决了这个问题:(为了方便,两个函数就放到一起了)

保存 / 读取高维度数据

np.save(frame,array)或np.savez(fname,array)(压缩)
+ frame:文件名,以.npy为扩展名,压缩扩展名为.npz
+ array:数组变量
np.load(fname)

Demo:

a = np.arange(100).reshape(5,10,2)
np.save("a.npy",a)
b=np.load("a.npy")

附录

附录中提供NP的常用方法及注释,做查询用。

np数组定义

>>>lst = [[1,3,5],[2,4,6]]
>>>np_lst = np.array(lst,dtype=np.float)
>>>print(np_lst.shape)#返回数组的行列
>>>print(np_lst.ndim)#返回数组的维数
>>>print(np_lst.dtype)#返回数据类型,float默认为64
>>>print(np_lst.itemsize)#np.array每个元素的大小,float64占8个字节
>>>print(np_lst.size)#大小,6个元素
(2, 3)
2
float64
8
6

初始化数组

>>>print(np.zeros([2,4])#初始化一个2行4列的数组
>>>print(np.ones([2,4])
[[ 0.  0.  0.  0.]
[ 0.  0.  0.  0.]]
[[ 1.  1.  1.  1.]
[ 1.  1.  1.  1.]]

随机序列

>>>print(np.random.rand(2,4))#将生成一个处于0~1之间2行4列的随机数序列(不加参数将只返回一个)
[[ 0.39531286  0.4845      0.1463168   0.82327991]
[ 0.89042255  0.65049931  0.43890163  0.89577744]]

如果想要多个随机整数:

print(np.random.randint(22,55,3))#必须有(前两个参数)指定范围,第三个参数用于指定生成的个数
[27 40 29]
print(np.random.randn(2,4))#生成标准正态随机数
[[-1.15561548  0.3689953   0.38253231 -1.16346441]
[-1.32625322 -0.41707673 -0.11822205 -0.95807535]]
print(np.random.choice([10,20,40,33]))#从指定可迭代的数组中生成随机数
20
print(np.random.beta(1,10,4))#生成4个beta分布
[ 0.02258548  0.25848896  0.00696899  0.0609543 ]

多维数组运算

print(np.arange(1,11,2))#得到step为2的range序列
[1 3 5 7 9]

还可以使用reshape函数,对数组结构重定义:

print(np.arange(1,11).reshape(2,5))#(5可以缺省为-1)
[[ 1  2  3  4  5]
[ 6  7  8  9 10]]

下面介绍一些常用的运算操作:

lst=np.arange(1,11).reshape(2,5)
print(np.exp(lst))#自然指数操作
[[  2.71828183e+00   7.38905610e+00   2.00855369e+01   5.45981500e+01    1.48413159e+02]
[  4.03428793e+02   1.09663316e+03   2.98095799e+03   8.10308393e+03    2.20264658e+04]]

此外,还可以sqrt、log、sin、sum、max等操作:
我们下定义一个三维数组:

lst = np.array([
                [[1,2,3,4],[4,5,6,7]],
                [[7,8,9,10],[10,11,12,13]],
                [[14,15,16,17],[18,19,20,21]]
            ])
print(lst.sum())
252

我们可以看到sum方法对lst的所有元素都进行了求和,此外我们还可以通过对sum方法增加参数axis的方式来设置求和的深入维度:

print(lst.sum(axis=0))
[[22 25 28 31]#22=1+7+14;25=2+8+15
[32 35 38 41]]
print(lst.sum(axis=1))
[[ 5  7  9 11]#5=1+4;7=2+5
[17 19 21 23]
[32 34 36 38]]
print(lst.sum(axis=2))
[[10 22]#10=1+2+3+4;22=4+5+6+7
[34 46]
[62 78]]

这里的axis取值为数组维数-1,axis可以理解为进行运算操作时的深入程度,axis越大,深入程度越大。同理,不仅sum函数,max等函数也可以一样理解。

相加运算

numpy.array是np最简单的数据结构。np.array相比与Python原生列表其强大之处在于可以实现对数组数据的运算。我们知道,list只能对元素的追加。而numpy是真正意义上的数据运算。
例如

    In [1]: import numpy as np
    In [2]: list1 = np.array([10,20,30,40])
    In [3]: list2 = np.array([4,3,2,1])
    In [4]: print(list1)
    [10 20 30 40]
    In [5]: print(list1+list2)
    [14 23 32 41]    

但np最强大的地方不在于简单的一维运算,Np对矩阵也能进行基本的运算操作:

lst1 =np.array([10,20,30,40])
lst2 = np.array([4,3,2,1])
print(np.dot(lst1.reshape([2,2]),lst2.reshape([2,2])))
[[10 22]
[34 46]
[62 78]]
[[ 80  50]
[200 130]]

此外,由于原生list没有确定的数据类型,所以维护起来成本较高,而使用C编写的numpy,则可以声明各种常见的数据类型:

lst = [[1,3,5],[2,4,6]]
np_lst = np.array(lst,dtype=np.float)

np所支持的数据类型都有bool、int8/16/32/64/128/、uint8/16/32/64/128、float16/32/43、complex64/128、string。

总结

Python作为一门弱类型语言,有其不可避免的缺点。但NP的出现,弥补了这些缺点,使其具备了构造复杂数据类型的能力,为Python数据分析提供了基础。

今天关于Python数据分析:numpypython数据分析numpy和pandas的分享就到这里,希望大家有所收获,若想了解更多关于numpy.random.random & numpy.ndarray.astype & numpy.arange、numpy.ravel()/numpy.flatten()/numpy.squeeze()、Numpy:数组创建 numpy.arrray() , numpy.arange()、np.linspace ()、数组基本属性、Python数据分析 - numpy等相关知识,可以在本站进行查询。

本文标签: