关于NumPy:数组计算和NumPy数组计算基础教室评语的问题就给大家分享到这里,感谢你花时间阅读本站内容,更多关于"importnumpyasnp"ImportError:Nomodulenamed
关于NumPy:数组计算和NumPy数组计算基础教室评语的问题就给大家分享到这里,感谢你花时间阅读本站内容,更多关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案、Difference between import numpy and import numpy as np等相关知识的信息别忘了在本站进行查找喔。
本文目录一览:- NumPy:数组计算(NumPy数组计算基础教室评语)
- "import numpy as np" ImportError: No module named numpy
- 3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数
- Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案
- Difference between import numpy and import numpy as np
NumPy:数组计算(NumPy数组计算基础教室评语)
一、MumPy:数组计算
1、NumPy是高性能科学计算和数据分析的基础包。它是pandas等其他各种工具的基础。
2、NumPy的主要功能:
- ndarray,一个多维数组结构,高效且节省空间
- 无需循环对整组数据进行快速运算的数学函数
- *读写磁盘数据的工具以及用于操作内存映射文件的工具
- *线性代数、随机数生成和傅里叶变换功能
- *用于集成C、C++等代码的工具
3、安装方法:pip install numpy
4、引用方式:import numpy as np
二、NumPy:ndarray-多维数组对象
1、创建ndarray:np.array()
2、ndarray是多维数组结构,与列表的区别是:
- 数组对象内的元素类型必须相同
- 数组大小不可修改
3、常用属性:
- T 数组的转置(对高维数组而言)
- dtype 数组元素的数据类型
- size 数组元素的个数
- ndim 数组的维数
- shape 数组的维度大小(以元组形式)
4、常用方法
array.shape array的规格
array.ndim
array.dtype array的数据规格
numpy.zeros(dim1,dim2) 创建dim1*dim2的零矩阵
numpy.arange
numpy.eye(n) /numpy.identity(n) 创建n*n单位矩阵
numpy.array([…data…], dtype=float64 )
array.astype(numpy.float64) 更换矩阵的数据形式
array.astype(float) 更换矩阵的数据形式
array * array 矩阵点乘
array[a:b] 切片
array.copy() 得到ndarray的副本,而不是视图
array [a] [b]=array [ a, b ] 两者等价
name=np.array([''bob'',''joe'',''will'']) res=name==’bob’ res= array([ True, False, False], dtype=bool)
data[True,False,…..] 索引,只索取为True的部分,去掉False部分
通过布尔型索引选取数组中的数据,将总是创建数据的副本。
data[ [4,3,0,6] ] 索引,将第4,3,0,6行摘取出来,组成新数组
data[-1]=data[data.__len__()-1]
numpy.reshape(a,b) 将a*b的一维数组排列为a*b的形式
array([a,b,c,d],[d,e,f,g]) 返回一维数组,分别为[a,d],[b,e],[c,f],[d,g]
array[ [a,b,c,d] ][:,[e,f,g,h] ]=array[ numpy.ix_( [a,b,c,d],[e,f,g,h] ) ]
array.T array的转置
numpy.random.randn(a,b) 生成a*b的随机数组
numpy.dot(matrix_1,matrix_2) 矩阵乘法
array.transpose( (1,0,2,etc.) ) 对于高维数组,转置需要一个由轴编号组成的元组
三、NumPy:ndarray-数据类型
- ndarray数据类型:dtype:
- 布尔型:bool_
- 整型:int_ int8 int16 int32 int64
- 无符号整型:uint8 uint16 uint32 uint64
- 浮点型:float_ float16 float32 float64
- 复数型:complex_ complex64 complex128
四、NumPy:ndarray-创建
创建ndarray:
array() 将列表转换为数组,可选择显式指定dtype
arange() range的numpy版,支持浮点数
linspace() 类似arange(),第三个参数为数组长度
zeros() 根据指定形状和dtype创建全0数组
ones() 根据指定形状和dtype创建全1数组
empty() 根据指定形状和dtype创建空数组(随机值)
eye() 根据指定边长和dtype创建单位矩阵
五、NumPy:索引和切片
1、数组和标量之间的运算
a+1 a*3 1//a a**0.5
2、同样大小数组之间的运算
a+b a/b a**b
3、数组的索引:
一维数组:a[5]
多维数组:
列表式写法:a[2][3]
新式写法:a[2,3] (推荐)
数组的切片:
一维数组:a[5:8] a[4:] a[2:10] = 1
多维数组:a[1:2, 3:4] a[:,3:5] a[:,1]
4、强调:与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组。 【解决方法:copy()】
六、NumPy:布尔型索引
问题:给一个数组,选出数组中所有大于5的数。
答案:a[a>5]
原理:
a>5会对a中的每一个元素进行判断,返回一个布尔数组
布尔型索引:将同样大小的布尔数组传进索引,会返回一个由所有True对应位置的元素的数组
问题2:给一个数组,选出数组中所有大于5的偶数。
问题3:给一个数组,选出数组中所有大于5的数和偶数。
答案:
a[(a>5) & (a%2==0)]
a[(a>5) | (a%2==0)]
import numpy as np
a = np.array([1,2,3,4,5,4,7,8,9,10])
a[a>5&(a%2==0)] #注意加括号,不叫括号错误,如下
输出:array([ 1, 2, 3, 4, 5, 4, 7, 8, 9, 10])
a[(a>5)&(a%2==0)]
输出:array([ 8, 10])
七、NumPy:花式索引*
问题1:对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组。
答案:a[[1,3,4,6,7]]
问题2:对一个二维数组,选出其第一列和第三列,组成新的二维数组。
答案:a[:,[1,3]]
八、NumPy:通用函数’
通用函数:能同时对数组中所有元素进行运算的函数
常见通用函数:
一元函数:abs, sqrt, exp, log, ceil, floor, rint, trunc, modf, isnan, isinf, cos, sin, tan
numpy.sqrt(array) 平方根函数
numpy.exp(array) e^array[i]的数组
numpy.abs/fabs(array) 计算绝对值
numpy.square(array) 计算各元素的平方 等于array**2
numpy.log/log10/log2(array) 计算各元素的各种对数
numpy.sign(array) 计算各元素正负号
numpy.isnan(array) 计算各元素是否为NaN
numpy.isinf(array) 计算各元素是否为NaN
numpy.cos/cosh/sin/sinh/tan/tanh(array) 三角函数
numpy.modf(array) 将array中值得整数和小数分离,作两个数组返回
numpy.ceil(array) 向上取整,也就是取比这个数大的整数
numpy.floor(array) 向下取整,也就是取比这个数小的整数
numpy.rint(array) 四舍五入
numpy.trunc(array) 向0取整
numpy.cos(array) 正弦值
numpy.sin(array) 余弦值
numpy.tan(array) 正切值
二元函数:add, substract, multiply, divide, power, mod, maximum, mininum,
numpy.add(array1,array2) 元素级加法
numpy.subtract(array1,array2) 元素级减法
numpy.multiply(array1,array2) 元素级乘法
numpy.divide(array1,array2) 元素级除法 array1./array2
numpy.power(array1,array2) 元素级指数 array1.^array2
numpy.maximum/minimum(array1,aray2) 元素级最大值
numpy.fmax/fmin(array1,array2) 元素级最大值,忽略NaN
numpy.mod(array1,array2) 元素级求模
numpy.copysign(array1,array2) 将第二个数组中值得符号复制给第一个数组中值
numpy.greater/greater_equal/less/less_equal/equal/not_equal (array1,array2)
元素级比较运算,产生布尔数组
numpy.logical_end/logical_or/logic_xor(array1,array2)元素级的真值逻辑运算
九、补充知识:浮点数特殊值
1、浮点数:float
2、浮点数有两个特殊值:
- nan(Not a Number):不等于任何浮点数(nan != nan)
- inf(infinity):比任何浮点数都大
在数据分析中,nan常被表示为数据缺失值
2、NumPy中创建特殊值:np.nan np.inf
3、在数据分析中,nan常被用作表示数据缺失值
既然nan连自己都不相等,那么怎么判断是不是NAN呢?
用a==a 只要返回False就能判断
十、NumPy:数学和统计方法
常用函数:
- sum 求和
- cumsum 求前缀和
- mean 求平均数
- std 求标准差
- var 求方差
- min 求最小值
- max 求最大值
- argmin 求最小值索引
- argmax 求最大值索引
十一、NumPy:随机数生成
随机数生成函数在np.random子包内
常用函数
- rand 给定形状产生随机数组(0到1之间的数)
- randint 给定形状产生随机整数
- choice 给定形状产生随机选择
- shuffle 与random.shuffle相同
- uniform 给定形状产生随机数组
"import numpy as np" ImportError: No module named numpy
问题:没有安装 numpy
解决方法:
下载文件,安装
numpy-1.8.2-win32-superpack-python2.7
安装运行 import numpy,出现
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
import numpy
File "C:\Python27\lib\site-packages\numpy\__init__.py", line 153, in <module>
from . import add_newdocs
File "C:\Python27\lib\site-packages\numpy\add_newdocs.py", line 13, in <module>
from numpy.lib import add_newdoc
File "C:\Python27\lib\site-packages\numpy\lib\__init__.py", line 8, in <module>
from .type_check import *
File "C:\Python27\lib\site-packages\numpy\lib\type_check.py", line 11, in <module>
import numpy.core.numeric as _nx
File "C:\Python27\lib\site-packages\numpy\core\__init__.py", line 6, in <module>
from . import multiarray
ImportError: DLL load failed: %1 不是有效的 Win32 应用程序。
原因是:python 装的是 64 位的,numpy 装的是 32 位的
重新安装 numpy 为:numpy-1.8.0-win64-py2.7
3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数
目录
[TOC]
前言
具体我们来学 Numpy 的统计函数
(一)函数一览表
调用方式:np.*
.sum(a) | 对数组 a 求和 |
---|---|
.mean(a) | 求数学期望 |
.average(a) | 求平均值 |
.std(a) | 求标准差 |
.var(a) | 求方差 |
.ptp(a) | 求极差 |
.median(a) | 求中值,即中位数 |
.min(a) | 求最大值 |
.max(a) | 求最小值 |
.argmin(a) | 求最小值的下标,都处里为一维的下标 |
.argmax(a) | 求最大值的下标,都处里为一维的下标 |
.unravel_index(index, shape) | g 根据 shape, 由一维的下标生成多维的下标 |
(二)统计函数 1
(1)说明
(2)输出
.sum(a)
.mean(a)
.average(a)
.std(a)
.var(a)
(三)统计函数 2
(1)说明
(2)输出
.max(a) .min(a)
.ptp(a)
.median(a)
.argmin(a)
.argmax(a)
.unravel_index(index,shape)
作者:Mark
日期:2019/02/11 周一
Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案
如何解决Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案?
希望有人能在这里提供帮助。我一直在绕圈子一段时间。我只是想设置一个 python 脚本,它将一些 json 数据从 REST API 加载到云数据库中。我在 Anaconda 上设置了一个虚拟环境(因为 GCP 库推荐这样做),安装了依赖项,现在我只是尝试导入库并向端点发送请求。 我使用 Conda(和 conda-forge)来设置环境并安装依赖项,所以希望一切都干净。我正在使用带有 Python 扩展的 VS 编辑器作为编辑器。 每当我尝试运行脚本时,我都会收到以下消息。我已经尝试了其他人在 Google/StackOverflow 上找到的所有解决方案,但没有一个有效。我通常使用 IDLE 或 Jupyter 进行脚本编写,没有任何问题,但我对 Anaconda、VS 或环境变量(似乎是相关的)没有太多经验。 在此先感谢您的帮助!
\Traceback (most recent call last):
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\__init__.py",line 22,in <module>
from . import multiarray
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\multiarray.py",line 12,in <module>
from . import overrides
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\overrides.py",line 7,in <module>
from numpy.core._multiarray_umath import (
ImportError: DLL load Failed while importing _multiarray_umath: The specified module Could not be found.
During handling of the above exception,another exception occurred:
Traceback (most recent call last):
File "c:\API\citi-bike.py",line 4,in <module>
import numpy as np
File "C:\Conda\envs\gcp\lib\site-packages\numpy\__init__.py",line 150,in <module>
from . import core
File "C:\Conda\envs\gcp\lib\site-packages\numpy\core\__init__.py",line 48,in <module>
raise ImportError(msg)
ImportError:
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy C-extensions Failed. This error can happen for
many reasons,often due to issues with your setup or how NumPy was
installed.
We have compiled some common reasons and troubleshooting tips at:
https://numpy.org/devdocs/user/troubleshooting-importerror.html
Please note and check the following:
* The Python version is: python3.9 from "C:\Conda\envs\gcp\python.exe"
* The NumPy version is: "1.21.1"
and make sure that they are the versions you expect.
Please carefully study the documentation linked above for further help.
Original error was: DLL load Failed while importing _multiarray_umath: The specified module Could not be found.
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)
Difference between import numpy and import numpy as np
Difference between import numpy and import numpy as np
up vote 18 down vote favorite 5 |
I understand that when possible one should use This helps keep away any conflict due to namespaces. But I have noticed that while the command below works the following does not Can someone please explain this? python numpy
|
||||||||
add a comment |
4 Answers
active oldest votes
up vote 13 down vote |
numpy is the top package name, and doing When you do In your above code: Here is the difference between
|
|||
add a comment |
up vote 7 down vote |
The When you import a module via the numpy package is bound to the local variable Thus, is equivalent to, When trying to understand this mechanism, it''s worth remembering that When importing a submodule, you must refer to the full parent module name, since the importing mechanics happen at a higher level than the local variable scope. i.e. I also take issue with your assertion that "where possible one should [import numpy as np]". This is done for historical reasons, mostly because people get tired very quickly of prefixing every operation with Finally, to round out my exposé, here are 2 interesting uses of the 1. long subimports 2. compatible APIs
|
||
add a comment |
up vote 1 down vote |
when you call the statement
|
||
add a comment |
up vote 1 down vote |
This is a language feature. This feature allows:
Notice however that Said that, when you run You receive an
|
||||||||
add a comment |
今天关于NumPy:数组计算和NumPy数组计算基础教室评语的分享就到这里,希望大家有所收获,若想了解更多关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、Anaconda Numpy 错误“Importing the Numpy C Extension Failed”是否有另一种解决方案、Difference between import numpy and import numpy as np等相关知识,可以在本站进行查询。
本文标签: