GVKun编程网logo

Python 科学计算库 - Numpy(python的科学计算库)

1

对于Python科学计算库-Numpy感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍python的科学计算库,并为您提供关于"importnumpyasnp"ImportError:Nomod

对于Python 科学计算库 - Numpy感兴趣的读者,本文将会是一篇不错的选择,我们将详细介绍python的科学计算库,并为您提供关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、c++ 科学计算库、Difference between import numpy and import numpy as np的有用信息。

本文目录一览:

Python 科学计算库 - Numpy(python的科学计算库)

Python 科学计算库 - Numpy(python的科学计算库)

NumPy 是 Python 语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,也是学习 python 必学的一个库。

1. 读取文件

numpy.genfromtxt () 用于读取 txt 文件,其中传入的参数依次为:

  1. 需要读取的 txt 文件位置,此处文件与程序位于同一目录下
  2. 分割的标记
  3. 转换类型,如果文件中既有文本类型也有数字类型,就先转成文本类型

help (numpy.genfromtxt) 用于查看帮助文档:
如果不想看 API 可以启动一个程序用 help 查看指令的详细用法

import numpy

world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",",dtype=str)
print(type(world_alcohol))
print(world_alcohol)
print(help(numpy.genfromtxt))

2. 构造 ndarray

numpy.array () 构造 ndarray

numpy.array() 中传入数组参数,可以是一维的也可以是二维三维的。numpy 会将其转变成 ndarray 的结构。

vector = numpy.array([1,2,3,4])
matrix = numpy.array([[1,2,3],[4,5,6]]) 

传入的参数必须是同一结构,不是同一结构将发生转换。

vector = numpy.array([1,2,3,4])

array([1, 2, 3, 4]) 

均为 int 类型

vector = numpy.array([1,2,3,4.0])

array([ 1., 2., 3., 4.]) 

转为浮点数类型

vector = numpy.array([1,2,''3'',4])

array([''1'', ''2'', ''3'', ''4''],dtype=''<U21'') 

转为字符类型

利用 .shape 查看结构

能够了解 array 的结构,debug 时通过查看结构能够更好地了解程序运行的过程。

print(vector.shape)
print(matrix.shape)
(4,)
(2, 3)

利用 dtype 查看类型

vector = numpy.array([1,2,3,4])
vector.dtype

dtype(''int64'') 

ndim 查看维度

一维

vector = numpy.array([1,2,3,4])
vector.ndim

1 

二维

matrix = numpy.array([[1,2,3],
                      [4,5,6], [7,8,9]]) matrix.ndim 2 

size 查看元素数量

matrix.size
9

3. 获取与计算

numpy 能使用切片获取数据

matrix = numpy.array([[1,2,3],
                      [4,5,6], [7,8,9]]) 

根据条件获取

numpy 能够依次比较 vector 和元素之间是否相同

vector = numpy.array([5, 10, 15, 20])
vector == 10 array([False, True, False, False], dtype=bool) 

根据返回值获取元素

vector = numpy.array([5, 10, 15, 20])
equal_to_ten = (vector == 10) print(equal_to_ten) print(vector[equal_to_ten]) [False True False False] [10] 

进行运算之后获取

vector = numpy.array([5, 10, 15, 20])
equal_to_ten_and_five = (vector == 10) & (vector == 5) 
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_or_five = (vector == 10) | (vector == 5) 

类型转换

将整体类型进行转换

vector = numpy.array([5, 10, 15, 20])
print(vector.dtype)
vector = vector.astype(str)
print(vector.dtype)

int64
<U21

求和

sum () 能够对 ndarray 进行各种求和操作,比如分别按行按列进行求和

matrix = numpy.array([[1,2,3],
                      [4,5,6], [7,8,9]]) print(matrix.sum()) print(matrix.sum(1)) print(matrix.sum(0)) 45 [ 6 15 24] [12 15 18] 

sum (1) 是 sum (axis=1)) 的缩写,1 表示按照 x 轴方向求和,0 表示按照 y 轴方向求和

4. 常用函数

reshape

生成从 0-14 的 15 个数字,使用 reshape (3,5) 将其构造成一个三行五列的 array。

import numpy as np
arr = np.arange(15).reshape(3, 5) arr array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) 

zeros

生成指定结构的默认为 0. 的 array

np.zeros ((3,4))

array([[ 0.,  0.,  0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) 

ones

生成一个三维的 array, 通过 dtype 指定类型

np.ones( (2,3,4), dtype=np.int32 )

array([[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]) 

range

指定范围和数值间的间隔生成 array,注意范围包左不包右

np.arange(0,10,2)

array([0, 2, 4, 6, 8]) 

random 随机数

生成指定结构的随机数,可以用于生成随机权重

np.random.random((2,3))

array([[ 0.86166627,  0.37756207,  0.94265883], [ 0.9768257 , 0.96915312, 0.33495431]]) 

5. ndarray 运算

元素之间依次相减相减

a = np.array([10,20,30,40])
b = np.array(4) a - b array([ 6, 16, 26, 36]) 

乘方

a**2
array([ 100,  400,  900, 1600]) 

开根号

np.sqrt(B)

array([[ 1.41421356,  0.        ],
       [ 1.73205081,  2.        ]])

e 求方

np.exp(B)

array([[  7.3890561 ,   1.        ],
       [ 20.08553692,  54.59815003]])

向下取整

a = np.floor(10*np.random.random((2,2)))
a

array([[ 0.,  0.], [ 3., 6.]]) 

行列变换

a.T

array([[ 0.,  3.],
       [ 0.,  6.]])

变换结构

a.resize(1,4)
a

array([[ 0.,  0.,  3., 6.]]) 

6. 矩阵运算

矩阵之间的运算

A = np.array( [[1,1],
               [0,1]] )
B = np.array( [[2,0], [3,4]] ) 

对应位置一次相乘

A*B

array([[2, 0],
       [0, 4]])

矩阵乘法

print (A.dot(B))
print(np.dot(A,B))

[[5 4]
 [3 4]] 

横向相加

a = np.floor(10*np.random.random((2,2)))
b = np.floor(10*np.random.random((2,2))) print(a) print(b) print(np.hstack((a,b))) [[ 2. 3.] [ 9. 3.]] [[ 8. 1.] [ 0. 0.]] [[ 2. 3. 8. 1.] [ 9. 3. 0. 0.]] 

纵向相加

print(np.vstack((a,b)))

[[ 2.  3.]
 [ 9.  3.]
 [ 8. 1.] [ 0. 0.]] 

矩阵分割

#横向分割
print( np.hsplit(a,3))
#纵向风格
print(np.vsplit(a,3))

7. 复制的区别

地址复制

通过 b = a 复制 a 的值,b 与 a 指向同一地址,改变 b 同时也改变 a。

a = np.arange(12)
b = a
print(a is b)

print(a.shape)
print(b.shape)
b.shape = (3,4)
print(a.shape)
print(b.shape)

True (12,) (12,) (3, 4) (3, 4) 

复制值

通过 a.view () 仅复制值,当对 c 值进行改变会改变 a 的对应的值,而改变 c 的 shape 不改变 a 的 shape

a = np.arange(12)
c = a.view()
print(c is a)

c.shape = 2,6
c[0,0] = 9999 print(a) print(c) False [9999 1 2 3 4 5 6 7 8 9 10 11] [[9999 1 2 3 4 5] [ 6 7 8 9 10 11]] 

完整拷贝

a.copy () 进行的完整的拷贝,产生一份完全相同的独立的复制

a = np.arange(12)
c = a.copy()
print(c is a)

c.shape = 2,6
c[0,0] = 9999 print(a) print(c) False [ 0 1 2 3 4 5 6 7 8 9 10 11] [[9999 1 2 3 4 5] [ 6 7 8 9 10 11]]

 

"import numpy as np" ImportError: No module named numpy

问题:没有安装 numpy

解决方法:

下载文件,安装

numpy-1.8.2-win32-superpack-python2.7

安装运行 import numpy,出现

Traceback (most recent call last):
  File "<pyshell#2>", line 1, in <module>
    import numpy
  File "C:\Python27\lib\site-packages\numpy\__init__.py", line 153, in <module>
    from . import add_newdocs
  File "C:\Python27\lib\site-packages\numpy\add_newdocs.py", line 13, in <module>
    from numpy.lib import add_newdoc
  File "C:\Python27\lib\site-packages\numpy\lib\__init__.py", line 8, in <module>
    from .type_check import *
  File "C:\Python27\lib\site-packages\numpy\lib\type_check.py", line 11, in <module>
    import numpy.core.numeric as _nx
  File "C:\Python27\lib\site-packages\numpy\core\__init__.py", line 6, in <module>
    from . import multiarray
ImportError: DLL load failed: %1 不是有效的 Win32 应用程序。

原因是:python 装的是 64 位的,numpy 装的是 32 位的

重新安装 numpy 为:numpy-1.8.0-win64-py2.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数

3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数

目录

[TOC]

前言

具体我们来学 Numpy 的统计函数

(一)函数一览表

调用方式:np.*

.sum(a) 对数组 a 求和
.mean(a) 求数学期望
.average(a) 求平均值
.std(a) 求标准差
.var(a) 求方差
.ptp(a) 求极差
.median(a) 求中值,即中位数
.min(a) 求最大值
.max(a) 求最小值
.argmin(a) 求最小值的下标,都处里为一维的下标
.argmax(a) 求最大值的下标,都处里为一维的下标
.unravel_index(index, shape) g 根据 shape, 由一维的下标生成多维的下标

(二)统计函数 1

(1)说明

(2)输出

.sum(a)

.mean(a)

.average(a)

.std(a)

.var(a)

(三)统计函数 2

(1)说明

(2)输出

.max(a) .min(a)

.ptp(a)

.median(a)

.argmin(a)

.argmax(a)

.unravel_index(index,shape)

作者:Mark

日期:2019/02/11 周一

c++ 科学计算库

c++ 科学计算库

可具体查看下面链接,以获取较全面的科学计算库

http://blog.csdn.net/lee_cv/article/details/17374685

http://www.oschina.net/project/tag/239/Mathematics-computin?sort=view&lang=0&os=0


 

Difference between import numpy and import numpy as np

Difference between import numpy and import numpy as np

Difference between import numpy and import numpy as np

up vote 18 down vote favorite

5

I understand that when possible one should use

import numpy as np

This helps keep away any conflict due to namespaces. But I have noticed that while the command below works

import numpy.f2py as myf2py

the following does not

import numpy as np
np.f2py #throws no module named f2py

Can someone please explain this?

python numpy

shareimprove this question

edited Mar 24 ''14 at 23:20

mu 無

24.7k104471

asked Mar 24 ''14 at 23:19

user1318806

3001311

 
1  

@roippi have you tried exit your python and enter it and just do import numpy then numpy.f2py ? It throws an error in my case too – aha Mar 24 ''14 at 23:24

1  

Importing a module doesn''t import sub-modules. You need to explicitly import the numpy.f2py module regardless of whether or not/how numpy itself has been imported. – alecb Mar 24 ''14 at 23:39

add a comment

4 Answers

active oldest votes

 

up vote 13 down vote

numpy is the top package name, and doing import numpy doesn''t import submodule numpy.f2py.

When you do import numpy it creats a link that points to numpy, but numpy is not further linked to f2py. The link is established when you do import numpy.f2py

In your above code:

import numpy as np # np is an alias pointing to numpy, but at this point numpy is not linked to numpy.f2py
import numpy.f2py as myf2py # this command makes numpy link to numpy.f2py. myf2py is another alias pointing to numpy.f2py as well

Here is the difference between import numpy.f2py and import numpy.f2py as myf2py:

  • import numpy.f2py
    • put numpy into local symbol table(pointing to numpy), and numpy is linked to numpy.f2py
    • both numpy and numpy.f2py are accessible
  • import numpy.f2py as myf2py
    • put my2py into local symbol table(pointing to numpy.f2py)
    • Its parent numpy is not added into local symbol table. Therefore you can not access numpy directly

shareimprove this answer

edited Mar 25 ''14 at 0:31

answered Mar 24 ''14 at 23:33

aha

1,2291718

 

add a comment

 

up vote 7 down vote

The import as syntax was introduced in PEP 221 and is well documented there.

When you import a module via

import numpy

the numpy package is bound to the local variable numpy. The import as syntax simply allows you to bind the import to the local variable name of your choice (usually to avoid name collisions, shorten verbose module names, or standardize access to modules with compatible APIs).

Thus,

import numpy as np

is equivalent to,

import numpy
np = numpy
del numpy

When trying to understand this mechanism, it''s worth remembering that import numpy actually means import numpy as numpy.

When importing a submodule, you must refer to the full parent module name, since the importing mechanics happen at a higher level than the local variable scope. i.e.

import numpy as np
import numpy.f2py   # OK
import np.f2py      # ImportError

I also take issue with your assertion that "where possible one should [import numpy as np]". This is done for historical reasons, mostly because people get tired very quickly of prefixing every operation with numpy. It has never prevented a name collision for me (laziness of programmers actually suggests there''s a higher probability of causing a collision with np)

Finally, to round out my exposé, here are 2 interesting uses of the import as mechanism that you should be aware of:

1. long subimports

import scipy.ndimage.interpolation as warp
warp.affine_transform(I, ...)

2. compatible APIs

try:
    import pyfftw.interfaces.numpy_fft as fft
except:
    import numpy.fft as fft
# call fft.ifft(If) with fftw or the numpy fallback under a common name

shareimprove this answer

answered Mar 25 ''14 at 0:59

hbristow

68345

 

add a comment

 

up vote 1 down vote

numpy.f2py is actually a submodule of numpy, and therefore has to be imported separately from numpy. As aha said before:

When you do import numpy it creats a link that points to numpy, but numpy is not further linked to f2py. The link is established when you do import numpy.f2py

when you call the statement import numpy as np, you are shortening the phrase "numpy" to "np" to make your code easier to read. It also helps to avoid namespace issues. (tkinter and ttk are a good example of what can happen when you do have that issue. The UIs look extremely different.)

shareimprove this answer

answered Mar 24 ''14 at 23:47

bspymaster

760923

 

add a comment

 

up vote 1 down vote

This is a language feature. f2py is a subpackage of the module numpy and must be loaded separately.

This feature allows:

  • you to load from numpy only the packages you need, speeding up execution.
  • the developers of f2py to have namespace separation from the developers of another subpackage.

Notice however that import numpy.f2py or its variant import numpy.f2py as myf2py are still loading the parent module numpy.

Said that, when you run

import numpy as np
np.f2py

You receive an AttributeError because f2py is not an attribute of numpy, because the __init__() of the package numpy did not declare in its scope anything about the subpackage f2py.

shareimprove this answer

answered Mar 24 ''14 at 23:57

gg349

7,67321739

 
    

when you do import numpy.f2py as myf2py, how do you access its parent numpy? it seems import numpy.f2py allows you to access its parent numpy, but import numpy.f2py as myf2py doesn''t – aha Mar 25 ''14 at 0:00

    

You don''t access it because you decided you didn''t want to use anything from numpy, and you only care of using the subpackage. It is similar to using from foo import bar: the name foo will not be accessible. See the comment after the first example of the docs, LINK – gg349 Mar 25 ''14 at 0:05

add a comment

今天的关于Python 科学计算库 - Numpypython的科学计算库的分享已经结束,谢谢您的关注,如果想了解更多关于"import numpy as np" ImportError: No module named numpy、3.7Python 数据处理篇之 Numpy 系列 (七)---Numpy 的统计函数、c++ 科学计算库、Difference between import numpy and import numpy as np的相关知识,请在本站进行查询。

本文标签: