对于想了解python中xrange和range的异同的读者,本文将提供新的信息,我们将详细介绍pythonrange和xrange的区别,并且为您提供关于'range(y.shape[1])'在“f
对于想了解python 中 xrange 和 range 的异同的读者,本文将提供新的信息,我们将详细介绍python range和xrange的区别,并且为您提供关于'range(y.shape[1])'在“for i in range(dataset2.shape[1]):”中是什么意思?、failed to allocate for range 0: no IP addresses available in range set: 172.20.xx.1-172.20.xx.254、gganimate 错误:seq.default(range[1], range[2], length.out = nframes) 中的错误:'from' 必须是一个有限数、highchart 列比较图表,如 xrange的有价值信息。
本文目录一览:- python 中 xrange 和 range 的异同(python range和xrange的区别)
- 'range(y.shape[1])'在“for i in range(dataset2.shape[1]):”中是什么意思?
- failed to allocate for range 0: no IP addresses available in range set: 172.20.xx.1-172.20.xx.254
- gganimate 错误:seq.default(range[1], range[2], length.out = nframes) 中的错误:'from' 必须是一个有限数
- highchart 列比较图表,如 xrange
python 中 xrange 和 range 的异同(python range和xrange的区别)
range函数说明:range ([start,] stop [, step]),根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个序列。
range 示例:
- >>> range(5)
- [0, 1, 2, 3, 4]
- >>> range(1,5)
- [1, 2, 3, 4]
- >>> range(0,6,2)
- [0, 2, 4]
xrange
函数说明:用法与 range 完全相同,所不同的是生成的不是一个数组,而是一个生成器。
xrange 示例:
- >>> xrange(5)
- xrange(5)
- >>> list(xrange(5))
- [0, 1, 2, 3, 4]
- >>> xrange(1,5)
- xrange(1, 5)
- >>> list(xrange(1,5))
- [1, 2, 3, 4]
- >>> xrange(0,6,2)
- xrange(0, 6, 2)
- >>> list(xrange(0,6,2))
- [0, 2, 4]
由上面的示例可以知道:要生成很大的数字序列的时候,用 xrange 会比 range 性能优很多,因为不需要一上来就开辟一块很大的内存空间,这两个基本上都是在循环的时候用:
- for i in range(0, 100):
- print i
- for i in xrange(0, 100):
- print i
这两个输出的结果都是一样的,实际上有很多不同,range 会直接生成一个 list 对象:
- a = range(0,100)
- print type(a)
- print a
- print a[0], a[1]
输出结果:
- <type ''list''>
- [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
- 0 1
而 xrange 则不会直接生成一个 list,而是每次调用返回其中的一个值:
- a = xrange(0,100)
- print type(a)
- print a
- print a[0], a[1]
输出结果:
- <type ''xrange''>
- xrange(100)
- 0 1
所以 xrange 做循环的性能比 range 好,尤其是返回很大的时候,尽量用 xrange 吧,除非你是要返回一个列表。
'range(y.shape[1])'在“for i in range(dataset2.shape[1]):”中是什么意思?
如何解决''range(y.shape[1])''在“for i in range(dataset2.shape[1]):”中是什么意思?
我想从外行的角度找出上面提到的这段代码是如何工作的? 对于上下文,此代码包含 Numpy、Seaborn、Pandas 和 matplotlib。
下面是代码行:
dataset2 = dataset.drop(columns = [''entry_id'',''pay_schedule'',''e_signed''])
fig = plt.figure(figsize=(15,12))
plt.suptitle(''Histograms of Numerical Columns'',fontsize=20)
**for i in range(dataset2.shape[1]):**
plt.subplot(6,3,i + 1)
f = plt.gca()
f.set_title(dataset2.columns.values[i])
解决方法
pd.shape
将为您提供数据帧中存在的 rows
和 columns
的数量。
其中,df.shape[0]
将为您提供数据帧中存在的 total rows
。
并且,df.shape[1]
会给你数据帧中存在的 columns
的数量。
示例:
,
df = pd.DataFrame({''Date'':[''10/2/2011'',''11/2/2011'',''12/2/2011''],''Phrases'':[''I have a cool family'',''I like avocados'',''I would like to go to school'']})
df
Out[26]:
Date Phrases
0 10/2/2011 I have a cool family
1 11/2/2011 I like avocados
2 12/2/2011 I would like to go to school
df.shape
Out[27]: (3,2)
df.shape[0] #number of rows
Out[28]: 3
df.shape[1] #number of columns
Out[29]: 2
.shape 返回一个元组(行数,列数)。因此 dataset.shape[1] 是列数。 i in range(dataset.shape[1]) 只是从 0 到列数迭代。
failed to allocate for range 0: no IP addresses available in range set: 172.20.xx.1-172.20.xx.254
今天遇到一个机器上的 Pod 在创建以后一直处于 Init 0/1 的状态,进到这个节点查看其 kubelet 的状态,发现果然有问题
systemctl status kubelet
.go:77] Container "1a7183767162740ba734e2c4b880e2937af1680e15fb1a7d66dc7e48fe0ca68c" not found in pod''s containers
RunPodSandbox from runtime service failed: rpc error: code = Unknown desc = NetworkPlugin cni failed to set up pod "ts-train-mongo-7f6f6668bd-rn2n4_default" network: failed to allocate f
o:54] CreatePodSandbox for pod "ts-train-mongo-7f6f6668bd-rn2n4_default(1264e4b7-fd27-11e8-aa60-525400c4f9f5)" failed: rpc error: code = Unknown desc = NetworkPlugin cni failed to set up
o:647] createPodSandbox for pod "ts-train-mongo-7f6f6668bd-rn2n4_default(1264e4b7-fd27-11e8-aa60-525400c4f9f5)" failed: rpc error: code = Unknown desc = NetworkPlugin cni failed to set up
rror syncing pod 1264e4b7-fd27-11e8-aa60-525400c4f9f5 ("ts-train-mongo-7f6f6668bd-rn2n4_default(1264e4b7-fd27-11e8-aa60-525400c4f9f5)"), skipping: failed to "CreatePodSandbox" for "ts-tra
o:403] No ready sandbox for pod "ts-order-other-service-78d5ff8b57-2k6gf_default(830f4782-fd27-11e8-aa60-525400c4f9f5)" can be found. Need to start a new one
o:403] No ready sandbox for pod "ts-station-service-c9ff7c7b7-pkpt9_default(9a9c5010-fd27-11e8-aa60-525400c4f9f5)" can be found. Need to start a new one
o:403] No ready sandbox for pod "ts-preserve-service-7b95474f77-8l4jw_default(88bc030d-fd27-11e8-aa60-525400c4f9f5)" can be found. Need to start a new one
ing network: failed to allocate for range 0: no IP addresses available in range set: 172.20.5.1-172.20.5.254
le adding to cni network: failed to allocate for range 0: no IP addresses available in range set: 172.20.5.1-172.20.5.254
提示 200 多个 IP 都被用完了,这什么情况
/var/lib/cni/networks/cbr0# ls
172.20.5.10 172.20.5.118 172.20.5.136 172.20.5.154 172.20.5.172 172.20.5.190 172.20.5.208 172.20.5.226 172.20.5.244 172.20.5.33 172.20.5.51 172.20.5.7 172.20.5.88
172.20.5.100 172.20.5.119 172.20.5.137 172.20.5.155 172.20.5.173 172.20.5.191 172.20.5.209 172.20.5.227 172.20.5.245 172.20.5.34 172.20.5.52 172.20.5.70 172.20.5.89
172.20.5.101 172.20.5.12 172.20.5.138 172.20.5.156 172.20.5.174 172.20.5.192 172.20.5.21 172.20.5.228 172.20.5.246 172.20.5.35 172.20.5.53 172.20.5.71 172.20.5.9
172.20.5.102 172.20.5.120 172.20.5.139 172.20.5.157 172.20.5.175 172.20.5.193 172.20.5.210 172.20.5.229 172.20.5.247 172.20.5.36 172.20.5.54 172.20.5.72 172.20.5.90
172.20.5.103 172.20.5.121 172.20.5.14 172.20.5.158 172.20.5.176 172.20.5.194 172.20.5.211 172.20.5.23 172.20.5.248 172.20.5.37 172.20.5.55 172.20.5.73 172.20.5.91
172.20.5.104 172.20.5.122 172.20.5.140 172.20.5.159 172.20.5.177 172.20.5.195 172.20.5.212 172.20.5.230 172.20.5.249 172.20.5.38 172.20.5.56 172.20.5.74 172.20.5.92
172.20.5.105 172.20.5.123 172.20.5.141 172.20.5.16 172.20.5.178 172.20.5.196 172.20.5.213 172.20.5.231 172.20.5.25 172.20.5.39 172.20.5.57 172.20.5.75 172.20.5.93
172.20.5.106 172.20.5.124 172.20.5.142 172.20.5.160 172.20.5.179 172.20.5.197 172.20.5.214 172.20.5.232 172.20.5.250 172.20.5.4 172.20.5.58 172.20.5.76 172.20.5.94
172.20.5.107 172.20.5.125 172.20.5.143 172.20.5.161 172.20.5.18 172.20.5.198 172.20.5.215 172.20.5.233 172.20.5.251 172.20.5.40 172.20.5.59 172.20.5.77 172.20.5.95
172.20.5.108 172.20.5.126 172.20.5.144 172.20.5.162 172.20.5.180 172.20.5.199 172.20.5.216 172.20.5.234 172.20.5.252 172.20.5.41 172.20.5.6 172.20.5.78 172.20.5.96
172.20.5.109 172.20.5.127 172.20.5.145 172.20.5.163 172.20.5.181 172.20.5.2 172.20.5.217 172.20.5.235 172.20.5.253 172.20.5.42 172.20.5.60 172.20.5.79 172.20.5.97
172.20.5.11 172.20.5.128 172.20.5.146 172.20.5.164 172.20.5.182 172.20.5.20 172.20.5.218 172.20.5.236 172.20.5.254 172.20.5.43 172.20.5.61 172.20.5.8 172.20.5.98
172.20.5.110 172.20.5.129 172.20.5.147 172.20.5.165 172.20.5.183 172.20.5.200 172.20.5.219 172.20.5.237 172.20.5.26 172.20.5.44 172.20.5.62 172.20.5.80 172.20.5.99
172.20.5.111 172.20.5.13 172.20.5.148 172.20.5.166 172.20.5.184 172.20.5.201 172.20.5.22 172.20.5.238 172.20.5.27 172.20.5.45 172.20.5.63 172.20.5.81 172.20.6.197
172.20.5.112 172.20.5.130 172.20.5.149 172.20.5.167 172.20.5.185 172.20.5.202 172.20.5.220 172.20.5.239 172.20.5.28 172.20.5.46 172.20.5.64 172.20.5.82 last_reserved_ip.0
172.20.5.113 172.20.5.131 172.20.5.15 172.20.5.168 172.20.5.186 172.20.5.203 172.20.5.221 172.20.5.24 172.20.5.29 172.20.5.47 172.20.5.65 172.20.5.83 lock
172.20.5.114 172.20.5.132 172.20.5.150 172.20.5.169 172.20.5.187 172.20.5.204 172.20.5.222 172.20.5.240 172.20.5.3 172.20.5.48 172.20.5.66 172.20.5.84
172.20.5.115 172.20.5.133 172.20.5.151 172.20.5.17 172.20.5.188 172.20.5.205 172.20.5.223 172.20.5.241 172.20.5.30 172.20.5.49 172.20.5.67 172.20.5.85
172.20.5.116 172.20.5.134 172.20.5.152 172.20.5.170 172.20.5.189 172.20.5.206 172.20.5.224 172.20.5.242 172.20.5.31 172.20.5.5 172.20.5.68 172.20.5.86
172.20.5.117 172.20.5.135 172.20.5.153 172.20.5.171 172.20.5.19 172.20.5.207 172.20.5.225 172.20.5.243 172.20.5.32 172.20.5.50 172.20.5.69 172.20.5.87
##flannel创建了很多文件
/var/lib/cni/flannel# ls | wc ; date
解决方案
rm -rf /var/lib/cni/flannel/* && rm -rf /var/lib/cni/networks/cbr0/* && ip link delete cni0
rm -rf /var/lib/cni/networks/cni0/*
gganimate 错误:seq.default(range[1], range[2], length.out = nframes) 中的错误:'from' 必须是一个有限数
如何解决gganimate 错误:seq.default(range[1], range[2], length.out = nframes) 中的错误:''from'' 必须是一个有限数
我正在尝试制作以下数据的动画累积地图:
structure(list(station_install_date = structure(c(16684,16684,16684),),lat = c(37.548645,37.549561,37.550007,37.550629,37.552746,37.554951),long = c(126.912827,126.905754,126.914825,126.914986,126.918617,126.910835),capa_sum = c(10L,5L,13L,10L,14L)),row.names = c(NA,-6L),groups = structure(list(station_install_date = structure(c(16684,.rows = structure(list(
1L,2L,3L,4L,6L),ptype = integer(0),class = c("vctrs_list_of","vctrs_vctr","list"))),class = c("tbl_df","tbl","data.frame"),.drop = TRUE),class = c("grouped_df","tbl_df","data.frame"))
我的代码如下:
SEOul <- get_googlemap("SEOul,South Korea",zoom=11,maptype = "roadmap")
ggmap(SEOul) +
geom_point(data = install_time_df,aes(x = long,y = lat),color = "red",alpha = 0.3) +
transition_time(station_install_date) +
ease_aes("linear")
但是,我不断收到错误:
Error in seq.default(range[1],range[2],length.out = nframes) :
''from'' must be a finite number
解决方法
试试:
p2<- ggmap(seoul) +
geom_point(data = install_time_df,aes(x = long,y = lat),color = "red",alpha = 0.3) +
transition_manual(station_install_date,cumulative = TRUE) +
ease_aes("linear")
anim2<- animate(p2,renderer = gifski_renderer())
anim_save("C:\\\\Users\\\\82104\\\\Desktop\\\\따릉이\\\\anim2.gif",animation = anim2)
highchart 列比较图表,如 xrange
如何解决highchart 列比较图表,如 xrange
对于每个日期,我有 4 个要比较并希望实现的值
我最好的尝试 - 分散
jsfiddle
Highcharts.chart(''container'',{
chart: {
type: ''scatter'',zoomType: ''xy''
},series: [{
"name": "master-A","color": "#29CC5F","data": [
[1615680000000,200],[1615766400000,210],[1615852800000,220],[1615939200000,]
},{
"name": "release-A","color": "#999999",100],110],120],{
"name": "master-B","color": "#198CFF",300],310],320],{
"name": "release-B","color": "#CCC796",400],410],420],]
}]
});
解决方法
您可以使用具有定义自定义形状的散点系列。示例:
// Define a custom symbol path
Highcharts.SVGRenderer.prototype.symbols.rectangle = function(x,y,w,h) {
return [''M'',x - 2 * w,''L'',x + 3 * w,y + h,''z''];
};
if (Highcharts.VMLRenderer) {
Highcharts.VMLRenderer.prototype.symbols.cross = Highcharts.SVGRenderer.prototype.symbols.cross;
}
现场演示: https://jsfiddle.net/BlackLabel/bod4t0cf/
API 参考: https://api.highcharts.com/highcharts/series.scatter.marker.symbol
,要更改标记的形状,in the documentation of the highcharts API says 关于使用图像。
引用:
此外,可以在此表单中给出图形的 URL:
“url(graphic.png)
”。请注意,对于要应用于导出的图像
图表,其 URL 需要可由导出服务器访问。
链接的文档包含一个在 jsfiddle 中可用的示例 - 请参阅 Predefined,graphic and custom markers。
今天的关于python 中 xrange 和 range 的异同和python range和xrange的区别的分享已经结束,谢谢您的关注,如果想了解更多关于'range(y.shape[1])'在“for i in range(dataset2.shape[1]):”中是什么意思?、failed to allocate for range 0: no IP addresses available in range set: 172.20.xx.1-172.20.xx.254、gganimate 错误:seq.default(range[1], range[2], length.out = nframes) 中的错误:'from' 必须是一个有限数、highchart 列比较图表,如 xrange的相关知识,请在本站进行查询。
本文标签: